Radiative capture measurements for transmutation of waste

-- and can RIA help?

Bob Haight LANCE-3

RIA Applications Workshop October 30-31, 2000

Outline

- ATW (or RTW) -- what is needed
- What could RIA add?

Transmutation of waste -- what is needed?

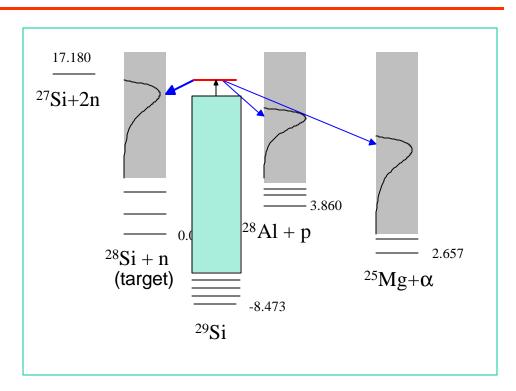
- Isotopes -- depends on the plan, but for sure:
 - minor actinides
 - fission products
 - all produced in quantity and relatively long-lived (?)
 - i.e. not far from valley of stability
- Transmutation reactions
 - fission
 - capture
 - $E_n < a$ few hundred keV (fast reactor spectrum)
- Criticality concerns
 - fission c/s, nu-bar, fission neutron spectra, moderation, capture...

What can RIA add for understanding radiative capture?

- Neutrons -- maybe -- at beam stop
- Otherwise
 - charged particle data as physics input to reaction models
 - nuclear level densities
 - nuclear spectroscopy
 - gamma-ray strength functions
 - optical model
 - production of target material in a cleaner way than reprocessing reactor waste -- make it and take it to a neutron facility
- As a substitute source for stable isotopes

Radiative capture of neutrons

- Direct capture (important generally at higher energies)
 - and related mechanisms such as direct-semidirect can be investigated by proton capture in inverse kinematics, e.g. $^{99}\text{Tc} + \text{p} --> ^{100}\text{Mo} + \gamma$
- Resonance capture (important at transmutation energies)
 - isolated resonances at eV energies need neutrons!
 - average over many resonances

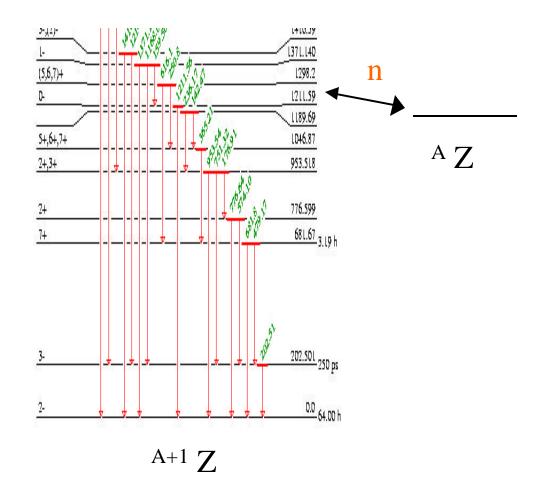

$$\sigma(n,\gamma) = 2 \pi^2 \tilde{\lambda}^2 \Gamma \gamma / D_0$$
 (s-wave) therefore need level densities at neutron separation

energy -- for fission products, this is generally lower than for nuclei close to valley of stability

Radiative capture above resolved resonances

Competes with neutron emission and perhaps other channels. To calculate:

- (1) need good optical model for **S** c.cn
- (2) need gamma-ray strength function for T_c ,

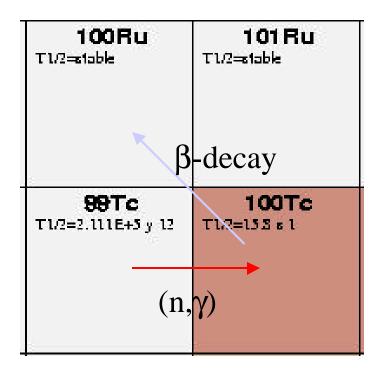


$$\mathbf{S}_{c,c'} = \mathbf{S}_{c,cn} \circ \frac{\mathbf{T}_{c'}}{\mathbf{S} \mathbf{T}_{c''}}$$
Level density
$$\mathbf{T}_{c'} = \mathbf{S} \mathbf{T}_{c'} (\mathbf{E}_{\mathbf{n}}^*) + \mathbf{T}_{c'} (\mathbf{E}_{\mathbf{n}}^*) \mathbf{r}(\mathbf{e}) d\mathbf{e}$$

Level density can be very low at neutron separation energy for neutron-rich nuclides but ATW nuclides are not so neutron rich

Nuclear levels in a "typical" nucleus very far from the valley of stability

There sure are a lot fewer bound levels and level density for resonance neutron capture is very low!!



How can RIA be used to address these problems?

- Fission product nuclides easily available
 - allows systematic studies across wide range of isotopes
- Actinides available (in lesser quantity?) but cleaner perhaps than from reprocessing
- Beams of nuclides well suited for experiments in inverse kinematics
- Experimental approaches will be extensions of proven techniques

Destruction of ⁹⁹Tc

Destruction of ¹⁵¹Sm

151E⊔	152Eu	153Eu	154Eu
Tl/2≕slabk	T1/2=13537 y 6	Tl/2≕stable	T1/2=3.593 y 4
150Sm T1/2⇒table	151Sm T1/2=30 y S ———————————————————————————————————	152Sm T1/2=stable (p,n) γ)	153Sm Tt.@⇒46.27 հ t
149Pm	150Pm	151Pm	152Pm
T1/2=53.08 h 5	T1/2=2.68 h 2	T1/2=28.40 h 4	T1/2=4.12 mS
148Nd	149Nd	150Nd	1 51 Nd
T1/2≈table	T1/2=1.728 h 1	T1/2>1.1E19y	T1/2=12.44 in 7

Radiative capture models can be tested

example: direct capture for fast nucleons

$$^{99}\text{Tc} + p --> ^{100}\text{Tc} + \gamma$$
or $^{99}\text{Ru} + n$

In inverse kinematics, the products all go forward and can be collected. Ratios of cross sections will result.

Conclusions

- Physics of neutron capture can be approached by experiments at RIA
- Pure isotopic samples might be prepared well at RIA
- Neutron capture cross sections difficult to measure directly at RIA